Muscle regeneration: molecular aspects and

therapeutic implications
Miranda D. Grounds

With respect to diverse clinical applications for muscle
regeneration, this paper discusses the latest markers for
identifying skeletal muscle precursor cells in regenerating
muscle, the implications of alternative sources of myogenic
precursor cells and putative stem cells, and the current status of
administration of exogenous factors to enhance muscle repair.
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Introduction

This paper outlines clinical interest in muscle regenera-
tion and related research. New molecular markers, which
are being used to identify myogenic precursor cells, are
examined, mainly with respect to satellite cells; these are
mononucleated myogenic reserve cells that lie on the
surface of mature myofibres beneath the external lamina.
Alternative sources of myogenic precursor cells (originat-
ing in interstitial connective tissue or bone marrow) and
putative stem cells are now attracting considerable
attention, and these are the next topic to be discussed.
Finally, recent developments related to exogenous
administration of factors /# viwe with the potential for
enhancing skeletal muscle repair are presented.

Clinical interest in muscle regeneration

"Therapeutic interest in muscle regeneration (for review
[1]) includes the conventional disciplines of increased
efficiency of repair in sports medicine [2,3], in
myopathies, and after severe injury or muscle trans-
plantation, in addition to recovery of strength in disuse
atrophy and space flight [4]. Regeneration also has a
novel effect in ablating mitochondrial myopathies,
because new muscle is effectively repopulated by
satellite cells with ‘healthy’ mitochondria [5], and this
might be exploited clinically. Regeneration is being
studied in experimental animal models [6], in which
limb muscles are usually examined, but it should be
noted that the efficiency of regeneration may differ
between various muscle types and the relatively
ineffective repair of masseter muscles may account
for the development of temporo mandibular disorders
after trauma [7°]. (An unusual application of muscle
grafts, as acellular scaffolds, is for reconstruction of
injured peripheral nerves [8].) Regarding the ageing
population, there has been an additional focus on the
capacity for repair of old muscle, and this is well
reviewed elsewhere [9-11]. In brief, myogenesis is
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shghtly delayed because of adverse changes in the host
environment [1] and long-term function is compro-
mised by impaired innervation [12,13]. These studies
emphasize the crucial role of host factors (angiogenesis,
inflammatory response, inpervation) in the efﬁc1cncy of
skeletal muscle regeneration. For clinical purposes, the
simplest strategies to improve the efficiency of new
muscle formation are increasing the speed and avidity
of the macrophage response [14,15°], and stimulating
revascularization [1,16,17].
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During the past decade there has been increasing
interest in the transplantation of isolated culcured
myoblasts, for a diverse range of reasons. Initially
myoblast transfer therapy (MTT) was developed to
replace defective genes in myopathies [e.g dystrophin in
Duchenne muscular dystrophy (DMD)] [18]; clinical
interest in this topic stimulated much research, although
many problems remain to be resolved. (Similarly, gene
therapy rather than MTT has replaced sarcoglycans in
limb—girdle muscular dystrophy [19°].) MTT has also
been used (for review [1]) to enhance muscle repair after
damage; for delivery of genes into the bloodstream [20],
brain or joints [21]; and to replace cardiac muscle cells in
acutely injured myocardium [22]. Cultured myoblasts
can form ectopic muscle [23], and are used in the rapidly
emerging discipline of tissue engineering to construct
potential ‘artificial’ muscles for transplantation purposes
[4,24]. For all of these purposes, stem cells (discussed
below) represent a potential powerful new source of
myogenic cells.

Myogenic cell markers

The classical view is that new muscle is formed from
satellite cells. These are located between the sarcolem-
ma and external lamina of myofibres, and they are
normally quiescent in mature muscle, but are activated
in response to damage. It should be noted that all
mononucleated myogenic cells are often widely referred
to as myoblasts, regardless of their origin. Satellite cells
can be identified using electron microscopy or by double
immunostaining with antibodies to molecules near the
sarcolemma (e.g. dystrophin, spectrin) and in the
external lamina (e.g. collagen IV, laminin-o). Activated
satellite cells can move out of this position, and it has
now been recognized (discussed below) that myoblasts
may be derived from cells other than satellite cells.
Thus, identification of early myogenic precursors (re-
gardless of their origin and location) requires the
presence of some specific marker; several candidate
genes are discussed below.

Satellite cell protein markers

The cell-surface protein M-cadherin (M-cad) seems
consistently useful for identifying satellite cells in vivo
(for review [25°]) and cultured myoblasts [26], although
messenger RNA expression appears to be very low
[25°26]. On isolated myofibres in culture, the great
majority of (but probably not all) mouse satellite cells are
positive for M-cad protein (Partridge T, personal
communication), and M-cad is not detectable on all rat
satellite cells [27]. This indicates that M-cad protein may
be very low (or absent) in some satellite cells. Isolated
myofibres maintained in tissue culture are attracting
increasing attention because this represents a ‘half-way’
situation between in-vivo studies and the extraction and
culture of isolated myoblasts [6,28°-30*].

The receptor for hepatocyte growth factor (HGF) c-met
is reported to be present on all quiescent and activated
satellite cells, and is readily identified by antibodies on
frozen tissue sections [6,31°*], isolated myofibres [28°]
and cultured myoblasts [26]. Although c-met may be an
excellent marker for satellite cells on isolated myofibres,
the observation that other cells in muscle, possibly
fibroblasts, also express c-met transcripts (Yablonka-
Reuveni Z, personal communication) indicates that c-
met might not be an ideal marker for primary cultures
and in-vivo studies.

The skeletal muscle-specific transcription factors MyoD
and myf5 are rapidly upregulated in activated myogenic
precursor cells [15%32,33]. There are conflicting data
concerning the extent to which one or both of these
genes may be expressed in quiescent satellite cells, or in
individual myoblasts, and whether different patterns of
expression might define two populations of cells; these
issues remain to be resolved [6,26]. In-vitro studies on
primary mouse muscle cultures and isolated myofibres
[29*,30°] have suggested that Myf5-positive cells might
represent a ‘stem’ cell subpopulation of satellite cells.

Expression of the transcription factor myocyte nuclear
factor in quiescent and proliferating satellite cells
indicates that this might be a useful marker for such
cells 7 vive [34] (for discussion [35°]).

The cytoskeletal protein desmin has been widely used
for identifying activated myoblasts because it is present
in very low amounts in quiescent satellite cells and is
rapidly upregulated in response to damage [3,28°,36].
Because desmin is also expressed in smooth and cardiac
muscle, some care may be required in interpreting in-
vivo data.

Antibodies to the mitogen-activated protein kinase family
members ERK1 and ERKZ clearly distinguish activated
satellite cells from myonuclei on isolated myofibres and
myoblasts in culture [29°,30°], but they also bind to other
cells in vivo. They therefore might be less useful for
identification of satellite cells in tissue sections.

Reporter genes of transgenic mice as myogenic
markers

Another approach to identifying myoblasts iz vivo is the
use of transgenic mice where a reporter gene like LacZ is
linked to expression of the candidate gene [10] (e.g.
desmin [14,37] or Myf5 [38]). Detection of the LacZ gene
product (f-galactosidase) by production of a blue colour
is often more convenient than immunohistochemical
detection of the native protein. Such transgenic mice can
be very useful as a source of donor myoblasts that are
readily identified after transplantation into normal host
mice [37,39°°].



Y-chromosome specific probe to track male

myogenic cells

Another useful marker for tracking transplanted myo-
blasts in mice is a Y-chromosome specific probe. This is a
permanent nuclear (DNA) marker that is present in all
male cells and their progeny; it does not require gene
expression and it readily distinguishes male (donor) from
female (host) nuclei on tissue sections [23,40,41]. This
marker was developed for MTT experiments
[23,42°,43,44] and is now being applied to stem-cell
studies [40,41].

Alternative sources of myoblasts and
myogenic stem celis

Although satellite cells are classically considered the
source of myoblasts in postnatal muscle, recent studies
(see below) have confirmed that myoblasts can also arise
from nonmyogenic sources i vive. There are clinical
applications for such alternative sources of myoblasts and
for putative myogenic stem cells, and this is now a topic
of intense research interest.

Myoblasts derived from mesenchymal stem cells

The plasticity of mesenchymal cells and the fact that a
precursor cell can become a myoblast, adipocyte,
chondroblast or osteoblast under different culture con-
ditions has long been recognized. Two populations of
mesenchymal stem cells that can be extracted from
connective tissue of humans and other species have
been described in extensive studies by Young and
coworkers [45,46]; these are progenitor cells (with
restricted but committed lineages) and pluripotential
cells (no committed lineage). It is difficult to distinguish
between the possibilities that pluripotential cells in
interstitial connective tissue are indeed derived from
resident cells, or that they might have originated from
bone-marrow derived precursor cells [47°] (see below).
That dermal (but not muscle-derived) fibroblasts can
give rise to skeletal muscle /7 viwo has been demon-
strated [48], and this tissue specificity favours the idea of
a truly resident cell rather than a common blood-born
precursor. In addition, there is evidence that skeletal
muscle precursors can arise from cells in the vasculature
(for review [49]), either from cells in the aorta possibly
related to endothelial cells and of bone-marrow origin
[49], or from vascular smooth muscle cell lines in which
it was noted that such myoblasts never expressed Myf5
(Graves DG, e al, unpublished data). A powerful
inductive stimulus to convert pluripotent cells into a
committed lineage is dexamethasone (and also bone and
muscle morphogenic proteins), whereas insulin [or
insulin-like growth factor (IGF)-I and IGF-II] is
required to induce myogenic expression in progenitor
cells. Many months are required for this conversion
vitro, however [45]. A soluble factor that induces
conversion of the dermal fibroblasts to the myogenic
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lineage has been identified as a lectin called f-
galactosidase-binding protein [50]. It is not known
whether similar ‘inductive agents’ act on mesenchymal
stem cells in the interstitial connective tissue of skeletal
muscle. The identification of inductive agents to recruit
additional cells to the myogenic lineage (that ideally
work /7 wivo) is a major challenge, with clinical
implications.

Bone-marrow derived myoblasts

The demonstration that muscle nuclei could arise from
bone-marrow derived precursor cells [39°%,40,41,51]
confirmed that this could occur /7 vive, although it seems
to be a rare event. It should be noted that in many (but
not all) instances the relatively ‘good’ contribution of such
donor myogenic cells occurred in irradiated muscle
[40,41,51], which is an unusually mitogenic environment
for donor myoblasts (also see below), and that endogen-
ous regeneration is impaired in irradiated dystrophic mdx
muscle. Not only can bone marrow stem cells give rise to
skeletal [40,51] and cardiac [40,52] muscle and other cells
[47°], but the inverse has been demonstrated with
haematopoietic lineages arising from skeletal muscle
[41] and neural stem cells [53**]. Thus, it appears that
stem cells from diverse tissues may be more similar and
totipotential than was previously anticipated. Such bone-
marrow derived stem cells might circulate continuously in
the bloodstream, or form part of the vasculature, or
become resident in interstitial connective tissue (see
above). These observations attracted considerable inter-
est, because delivery of muscle precursors through the
bloodstream represents an ideal route for distribution to
all skeletal muscles. The crucial questions are as follows:
can bone-marrow derived cells give rise to large numbers
of myoblasts /7 vive?; can this be exploited as an efficient
way to deliver myoblasts to skeletal muscle?; and can this
be employed for clinical benefit [41,54]?

Stem cells

The developmental relationships between the various
myogenic progenitor and stem cells described above
have been reviewed [35°,49]. Ideally, for many myoblast
transplantation purposes a ‘stem’ cell is required; this
is defined as a cell that never loses its capacity to
replicate — it only divides occasionally to give rise ro
other cells that undergo extensive replication. This is
based on the concept of the Hayflick number that was
developed from tissue culture observations, and whether
this really applies 77 vivo has been challenged [55]. The
quest to isolate such a stem cell has been the holy grail
of haematopoietic research for many years [56,57] and is
now attracting attention from the perspective of myo-
genesis.

Experiments with MT'T in animals [42°,58,59], in which
cultured myoblasts are injected into host skeletal
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muscles, suggest that myogenic stem cells can be
isolated from skeletal muscle. Myogenic stem cells were
identified on the basis that they represent a very slow
replicating population of cells in primary cultures and
that (after injection) they survived and gave rise to donor
myogenic cells with extensive proliferative capacity in
the (artificially mitogenic environment of the irradiated)
host muscles [42°]. Other experiments [58] concluded
that there was a slow and a fast replicating population of
satellite cells, and slow and fast replicating populations
of satellite cells were also identified on myofibres of
growing rats [29°], where it was considered that the
slowly dividing satellite cells might represent stem cells.
Heterogeneity of cells derived from single myogenic cell
clones was demonstrated 7 vitro with the immortalized
mouse C2 myogenic cell line [60], and it was suggested
that one of the progeny of the initial cells must retain
‘stem cell’-like properties. The isolation of four popula-
tions of satellite cells from developing human muscle
[61] further emphasized the heterogeneity of such
precursor cells in muscle tissue. Other in-vivo studies
[59] showed that new muscle was formed in muscles that
had been heavily pre-irradiated (with 18 Gy, which
prevents replication of most cells [62]), and these ‘radio-
resistant’ myogenic stem cells were activated only in
response to extensive injury provoked by notexin. In all
of these situations, the putative resident myogenic stem
cells might be a subpopulation of satellite cells, or
originate from mesenchymal ‘stem’ cells, or be of
nonmuscle (e.g. bone marrow) origin (discussed above).

The characterization of myogenic ‘stem cells’ is of
considerable interest and attention is now focusing on
cell surface markers that might identify and enable
purification of such cells [41,46]. Similar markers were
assessed for human bone-marrow derived mesenchymal
stem cells by Pittenger er a/. [47°], but those investigators
did not test for myogenic capacity; these cells do
manifest a skeletal muscle lineage, however (Pittenger
MF, personal communication). The expression of Bcl-2
(an apoptosis-inhibiting protein) has been also been
suggested as a marker for myogenic stem cells, although
skeletal muscle is formed in Bel-2 null mice [63]. The
isolation of embryonic stem cells from the human
blastocyst [64] provided another potential source of
human ‘myogenic stem cells’ for clinical MTT and
tissue engineering [65).

Clinical implications

Such an ‘alternative’ source of myoblasts has particular
clinical merit in the potential treatment of DMD
patients by an ex-vivo gene therapy approach [54,66].
In this situation the patient’s own myoblasts are
extracted, genetically corrected, and the autologous
myoblasts are implanted back into the patient’s own
muscles. This approach is a combination of gene

replacement and MT'T, and the use of autologous cells
is designed to overcome potential problems of immune
rejection. Because satellite cells from the skeletal muscle
of DMD boys probably have a limited capacity for
replication, an alternative source of autologous myogenic
cells (e.g. from dermal fibroblast or bone-marrow stem
cells) is ideal for such ex-vivo gene therapy. Even for
conventional MTT (or in tissue engineering to produce
‘artificial’ muscles), deriving donor myoblasts from
dermal fibroblasts, mesenchymal, or bone-marrow stem
cells might be preferable to using muscle biopsies.

Growth factors and myogenesis in vivo
Because of the complexity of in-vivo events [6] and the
pleiotrophic action of many factors [17], it can be difficult
to determine the precise cellular mechanism of action of
a treatment regimen or factor unless samples at different
time points are analyzed. The necessity for comprehen-
sive examination of the total pattern of regenerative
events has been emphasized by studies on injured
muscles [3,15°] in which a marked stimulation of satellite
cell proliferation had no overall effect on regeneration;
and in whole muscle grafts in MyoD null mice in which
myoblast proliferation was sustained and myotube
formation delayed by 2 days, although overall regenera-
tion was not impaired (White ], ¢z /., unpublished data).
Many well-designed in-vivo studies are now being
undertaken as indicated below.

Can administration of exogenous factors enhance
muscle repair?

A huge range of growth factors and other molecules are
known to influence muscle regeneration (for review
[6,11,67]1). Whether administration of exogenous growth
factors can significantly enhance clinical muscle function
or repair remains to be seen. One approach for in-vivo
studies is to administer the growth factor (or an inhibitor/
blocking agent) directly and assess the impact on muscle
regeneration. This has been done using leukaemia
inhibitory factor [17,67], fibroblast growth factor (FGF),
interferon-o, chemically substituted dextrans [68°],
dexamethasone, triiodothyronine, propranolol, clenbu-
terol and isoprenaline (for review [1]). Factors that have
attracted much interest recently are HGF, and the FGF
and IGF families. These and other factors relating to
recent in-vivo experiments are discussed below. Before
discussing these factors it is pertinent to comment on the
emerging use of genetic engineering, which will have a
huge impact on generating information regarding the
critical importance of various factors during regeneration
of adult muscle i vivo.

Genetically engineered mice

Genetic manipulation of gene expression can be
achieved by injecting the gene of interest directly into
the muscle [69%70,71], or by generating null or



transgenic mice [10]. Such new mice are wonderful
models for the study of factors that control the crucial
events of muscle regeneration after experimental injury
or muscle transplantation [26,67,72°°,73,74] (White ], e
al., unpublished data). A convenient way to assess the
impact of modified gene expression on muscle regenera-
tion is to cross such null or transgenic mice with
dystrophic mdx (or dy/dy) mice, in which there is
endogenous repeated muscle injury and regeneration.
Using this approach it was demonstrated that the
absence of MyoD in mdx mice resulted in impaired
regeneration and a more severe dystrophy [72°°] and the
dystrophic process was also exacerbated by a lack of

FGF-6 [74].

Further sophisticated genetic engineering theoretically
enables selected genes to be knocked out or induced in
a tissue-specific manner (e.g. in skeletal muscle only)
using Cre-loxP recombination technology [75] combined
with constructing genes with an inducible enhancer that
responds to an exogenous substance [75-78]. Such
‘designer’ transgenics can be used to study the effects
of enhanced or ablated expression of a specific gene in a
specific tissue (regenerating muscles) at a particular time.
Another application is in the study of MTT or myogenic
stem cells (see above), to assess the effect of an
engineered pattern of gene expression on the numbers
or function of such cells.

Hepatocyte growth factor

One of the hot candidates to stimulate regeneration 47
vive is HGF. The receptor for HGF, c-met, is expressed
by quiescent satellite cells and HGF is present in
myotubes iz vitro [79] and adult myofibres i vivo [31°°].
HGEF is able to activate quiescent satellite cells and is a
potent mitogen for myoblasts [79], but not fibroblasts (in
this way it differs from FGF-2), therefore making it a
very attractive factor to stimulate myogenesis preferen-
tially without fibrosis 77 ©ive [31°°]. Once activated, the
satellite cells are kept proliferating and are prevented
from differentiating by HGF [31°*] and these effects are
mediated through the basic helix loop helix (bHLH)
protein Twist and the cyclin-dependent kinase inhibitor
p27 (Leshem Y, ¢z a/., unpublished data). The intriguing
mitogen extracted from damaged muscle now appears to
be HGF [31**], which strongly supports the idea that
HGF plays a major role during muscle regeneration.
Furthermore, HGF is produced by myofibres and
myoblasts and the messenger RNA is upregulated by
12 h in rat satellite cell cultures (Shannon M, e a/,
unpublished data). Assessment in tissue culture of the
proliferation of myoblasts extracted from muscles
sampled 16 h after in-vivo administration of HGF and
other growth factors further supported a crucial role for
HGEF in stimulating satellite cell activation [31**]. The
pattern of proliferation of satellite cells on isolated rat
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myofibres in culture did not support the notion that
HGF is more critical than FGF-2 for satellite cell
activation, however [29°]. The complexity of in-vivo
administration has been demonstrated by studies in mice
[80] that showed increased myoblast proliferation when
HGF was injected intramuscularly at the time of cold
injury, although overall regeneration was not improved.
Furthermore, sustained HGF administration inhibited
myoblast differentiation, leading to impaired regenera-
tion; this effect was more severe if HGF was given from
early in the regenerative process and the tissue
recovered if HGF administration was stopped [80].

Fibroblast growth factors

FGF-Z is well recognized as a potent mitogen for
myoblasts, and it causes satellite cells on isolated
myofibres from adult rats to proliferate [29°]. Conflicting
results were obtained with in-vivo administration of
FGF-2 (for review [67]), and this may be because
availability of the receptors [81,82] and critical proteo-
glycans, rather than FGF-2 itself, might be a limiting
factor in wiwve. A recent study on isolated cultured
myofibres from adult rats (Kastner S, ¢ @/, unpublished
data) showed that FGF-1, FGF-2, FGF-4, FGF-6 and
HGF all enhance satellite cell proliferation to a similar
extent, whereas FGF-5 and FGF-7 had no effect. This
study also showed that myofibres express more FGF-6
messenger RNA than the surrounding connective tissue
cells. Hence, FGF-6 seems to play a particulasly
important role in myogenesis of adult muscle, as was
demonstrated by impaired regeneration in FGF-6 null
mice [74] and the association of Fgf6 gene expression
with extended myoblast replication and muscle fibre
hyperplasia in trout [83]. Another recent study on rat
satellite cells in culture [82] similarly showed a mitogenic
effect of FGF-1, FGF-2, FGF-4, FGF-6 and FGF-9, and
no effect with FGF-5, FGF-7 and FGF-8, and HGF
further enhanced the mitogenic effects of FGF-2, FGF-
4, FGF-6 and FGF-9. The mitogenic effects of HGF
and the FGFs appear to be critical for satellite cell
proliferation, but their precise interactions and roles are
yet to be clarified in vivo.

Heparan sulphate proteoglycans and

extracellular matrix

Many factors including HGF and FGF bind to heparan
sulphate proteoglycans in the extracellular matrix, and
such proteoglycans play an important role during
myogenesis [84-86]. The administrations of synthetic
polymers called regenerating agents (RGTAs) that
imitate the heparan sulphates appear to have a remark-
able effect on the healing of many tissues. In crush-
injured skeleral muscle, RGTAs accelerated both
regeneration and reinnervation, and prevented some of
the damage resulting from ischaemia in denervated
muscle [68°], thus presenting new thérapeutic ap-
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proaches in various clinical situations. Clearly extracel-
lular matrix molecules play a major role during muscle
development, in many myopathies and in regeneration
[87,88,89°], but this topic is too large to be discussed
here.

Insulin-like growth factors, myostatin and

muscle hypertrophy

It is well documented that the IGFs have potent effects
on myoblast proliferation and differentiation, and they
have recently attracted particular interest due to their
anabolic effects, which lead to muscle hypertrophy. This
has led to suggestions that IGF-I administration might
prevent age-associated myofibre loss, necrosis of dys-
trophic myofibres [69°] and myofibre atrophy resulting
from space travel or disuse [4]. The role of IGF-I in
hypertrophy of myotubes was clearly demonstrated iz
vitro by overexpression of IGF-I in transfected cultures
of mouse and rat muscle cell lines [33,90,91]. Infusion of
IGF-I in rats [92] and enhanced IGF-I expression in
type-2 (fast) myofibres (delivered in a viral construct) in
mdx mice [69°] also resulted in myofibre hypertrophy.
Conversely, decreased IGF-I and IGF-II in rats treated
with massive doses of corticosteroids may account for the
atrophy of diaphragm muscle and be responsible for the
diaphragmatic changes seen clinically after steroid
treatment [93]. The interest in factors that control
hypertrophy and atrophy was excited by the massive
hypertrophy seen in mice and cattle when myostatin (a
member of the transforming growth factor super family
[94]) is not expressed [95]. In humans, increased
myostatin levels were found in human immunodefi-
ciency virus-infected men with weight loss and correlate
inversely with fat-free mass index [96]. It is possible that
there is some inverse relationship between myostatin
and perhaps IGF-II [90]. Other anabolic agents that have
been studied 7 wvive are clenbuterol [97], and the
anabolic steroid nandrolene decanoate [98], which had
no effect on the cellular events but a beneficial effect on
muscle strength recovery at 2 weeks after injury [88].

Other treatments

Some treatments that traditionally improve muscle
recovery or function after soft tissue injury have now
been evaluated at the cellular level. Detailed in-vivo
experiments show that ultrasound produces a marked
stimulation of satellite cell proliferation, but no overall
effect on myotube formation or regeneration [3], and the
nonsteroidal anti-inflammatory agent naproxen has no
overall benefit on muscle repair [2]. Low-energy laser
irradiation stimulates satellite cell proliferation and
differentiation iz witro [99°], and there is a report in
Russian of an in-vivo study [100]. Because of the
tremendous interest in prescribing corticosteroids such
as presnisolone or deflazacort to ameliorate DMD and
the controversy that surrounds this, it seems critical to

define the effects of these drugs on all aspects of skeletal
muscle necrosis and repair. From studies of experimental
injury it was concluded that deflazacort promoted muscle
repair [101], whereas prednisolone decreased the inflam-
matory cell response and had an adverse effect on new
muscle formation [98].

Finally, strikingly enhanced skeletal muscle regenera-
tion was observed when curcumin, an inhibitor of the
transcription factor nuclear factor-xB was administered
intraperitoneally in mice [15°]. Such systemic delivery of
a pharmacological agent or cytokine [17] is the ideal
approach for potential clinical intervention in muscle
repair.

Conclusion

There is a renaissance of research interest in postnatal
myogenesis, fuelled by the availability of new strains of
genetically engineered mice. Useful markers for satellite
cells and myoblasts include M-cad, c-met, MyoD, Myf5
and desmin. However, these markers do not address the
early identification of ‘myogenic’ stem cells derived from
nonmyogenic sources, and this is a new quest. An even
greater challenge is to identify factors that induce the
conversion of such nonmyogenic cells into the myogenic
lineage in vive. Many in-vivo studies are now critically
assessing factors that might enhance the success of
muscle regeneration.
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